
Anonymous. FAOSTAT Data Base (2023); accessed 1 September 2023, http://nhb.gov.in/database.
Din, B. N. B. M. Isolation, characterization, and histopathological study of pathogenic bacteria associated with crown rot of papaya (Carica papaya L.) in Peninsular Malaysia. M.Sc. Thesis (2014).
Fullerton, R. A. et al. First record of bacterial crown rot of Papaya (Carica papaya L.) caused by an Erwinia papayae-like bacterium in the Kingdom of Tonga. Plant. Dis. 95, 70. https://doi.org/10.1094/PDIS-06-10-0455 (2011).
Gómez-Godínez, L. J. et al. Isolation and characterization of fungal pathogens associated with Carica papaya L. and their biocontrol with Trichoderma Sp. Agro Product. 17, 185–197. https://doi.org/10.32854/agrop.v17i17.2802 (2024).
Guo, T. et al. Comparison of transmission of papaya leaf curl china virus among four cryptic species of the whitefly Bemisia tabaci complex. Sci. Rep. 5, 15432. https://doi.org/10.1038/srep15432 (2015).
He, Y. et al. First report of anthracnose fruit rot of Papaya caused by Colletotrichum gigasporum in China. Plant. Dis. 108, 810. https://doi.org/10.1094/PDIS-10-23-2162-PDN (2024).
Mustofa, S., Ahad, M. T., Emon, Y. R. & Sarker, A. Papaya leaf: A dataset of Papaya leaf for disease detection, classification, and analysis. Data Brief. 57, 110910. https://doi.org/10.1016/j.dib.2024.110910 (2024).
Rafiq, R. & Fatima, H. Morphological characterization of Sclerotinia sclerotiorum causing fruit rot of Papaya and its management using biopesticides. J. Agric. Biol. 1, 47–52. https://doi.org/10.55627/agribiol.001.02.0652 (2023).
Sneha, K. B., Indra, N., Murugavel, K. & Thangeswari, S. Occurrence of Gilbertella persicaria causing soft rot of Papaya in India. Physiol. Mol. Plant. Pathol. 102481. https://doi.org/10.1016/j.pmpp.2024.102481 (2024).
Wu, Z., Mo, C., Zhang, S. & Li, H. Characterization of papaya ringspot virus isolates infecting transgenic Papaya ‘huanong 1’ in South China. Sci. Rep. 8, 8206. https://doi.org/10.1038/s41598-018-26596-x (2018).
Tripathi, S., Suzuki, J. Y., Ferreira, S. A. & Gonsalves, D. Papaya ringspot virus-P: Characteristics, pathogenicity, sequence variability and control. Mol. Plant. Pathol. 9, 269–280. https://doi.org/10.1111/j.1364-3703.2008.00467.x (2008).
Davis, R. I. & Tsatsia H. A survey for plant diseases caused by viruses and virus-like pathogens in the Solomon Islands. Australas Plant. Pathol. 38, 193–201. https://doi.org/10.1071/AP08114 (2009).
Cabrera Mederos, D., Giolitti, F., Torres, C. & Portal, O. Distribution and phylodynamics of papaya ringspot virus on Carica papaya L. in Cuba. Plant. Pathol. 68, 239–250. https://doi.org/10.1111/ppa.12950 (2019).
Hasiów-Jaroszewska, B., Borodynko, N., Rymelska, N. & Pospieszny, H. First report of papaya ringspot virus infecting zucchini plants in Poland. Plant. Dis. 94, 633. https://doi.org/10.1094/PDIS-94-5-0633A (2010).
Kim, O. K., Mizutani, T., Natsuaki, K. T., Lee, K. W. & Soe, K. First report and the genetic variability of cucumber green mottle mosaic virus occurring on bottle gourd in Myanmar. J. Phytopathol. 158, 572–575. https://doi.org/10.1111/j.1439-0434.2010.01634.x (2010).
Noshad, Q. Q. et al. First record of papaya ring spot virus (PRSV) strain in Malir district Sindh and in Islamabad Pakistan. Int. J. Agric. Biol. 17, 399–402. https://doi.org/10.17957/IJAB/17.3.15 (2015).
Khanal, V. & Ali, A. First report of cucurbit aphid-borne yellows virus infecting Cucurbita pepo in Oklahoma. Plant. Dis. 102, 1046–1047. https://doi.org/10.1094/PDIS-11-17-1684-PDN (2018).
Begum, F. et al. Surveillance of the disease incidence and severity of papaya ringspot virus at four selected districts of Bangladesh. Int. J. Environ. Agric. Biotechnol. 3, 2083–2090. https://doi.org/10.22161/ijeab/3.6.16 (2018).
Listihani, Damayanti, T. A., Hidayat, S. H. & Wiyono, S. Karakterisasi Molekuler papaya ringspot virus Tipe P Pada Tanaman mentimun Di Jawa. J. Fitopatol. Indones. 14, 75–82. https://doi.org/10.14692/jfi.14.3.75 (2018).
Esquivel-Fariña, A., Kraide, H. D., Camelo-García, V., Rezende, J. A. M. & Kitajima, E. W. Detection of the papaya strain of papaya ringspot virus (PRSV-P) in Paraguay. J. Plant. Pathol. 103, 1. https://doi.org/10.1007/s42161-021-00805-5 (2021).
Medina-Salguero, A. X. et al. Genetic characterization of a mild isolate of papaya ringspot virus type-P (PRSV-P) and assessment of its cross-protection potential under greenhouse and field conditions. PLoS ONE 16, e0241652. https://doi.org/10.1371/journal.pone.0241652 (2021).
Premchand, U. et al. Survey, detection, and characterization of papaya ringspot virus from Southern India and management of Papaya ringspot disease. Pathogens 12, 824. https://doi.org/10.3390/pathogens12060824 (2023).
Basavaraj, Y. B., Parameshwari, B., Kumar, A., Jain, R. K. & Tripathi, S. Papaya ring spot virus: Status of 80 years of global research. In Plant RNA Viruses, 135–172 (Academic Press, 2023). https://doi.org/10.1016/B978-0-323-95339-9.00024-7.
Parris, G. K. A new disease of Papaya in Hawaii. Proc. Am. Soc. Hortic. Sci. 36, 263–265 (1938).
Linder, R. C., Jensen, D. D. & Ikeda, W. Ring spot: New Papaya plunderer. Hawaii. Farm. Home. 8, 10–14 (1945).
Jensen, D. D. Papaya virus diseases with special reference to Papaya ringspot. Phytopathology 39, 191–211 (1949).
Capoor, S. P. & Verma, P. M. A mosaic disease on Carica papaya L. in the Bombay Province. Curr. Sci. 17, 265–266 (1948).
Reddy, L. R., Nagaraju, C.N., Kumar, M.K.P. & Venkataravanappa, V. Incidence of Papaya ringspot virus disease in Bangalore district. J. Plant Dis. Sci. 2, 104–106 (2007).
Talukdar, A. et al. Genetics of yellow mosaic virus (YMV) resistance in cultivated soybean [Glycine max (L) Merr]. Legume Res. 36, 263–267 (2013).
Hemavati, R., Sharma, S. K., Pinki, P. & Ngachan, S. V. Molecular evidence for association of papaya ringspot virus with Papaya from North East hill region of India. Indian Phytopathol. 70, 246–251. https://doi.org/10.24838/ip.2017.v70.i2.70755 (2017).
Babu, K. S. & Banerjee, A. Biological and molecular evidence of papaya ringspot virus pathotype P from mid-hills of Meghalaya, India. Indian Phytopathol. 71, 611–620. https://doi.org/10.1007/s42360-018-0097-9 (2018).
Harish, A. Characterization, host range, and management of papaya ringspot virus. MSc thesis, Kerala Agric. Univ. 204 (2018).
Basavaraj, Y. B. et al. Molecular diversity of Papaya ringspot virus in India: Genetic recombination and mutations between the isolates from different hosts and geo-climatic locations are role players in virus evolution. Indian Phytopathol. 72, 497–511. https://doi.org/10.1007/s42360-019-00157-2 (2019).
Quiot-Douine, L., Lecoq, H., Quiot, J. B., Pitrat, M. & Labonne, G. Serological and biological variability of virus isolates related to strains of papaya ringspot virus. Phytopathology 80, 256–263. https://doi.org/10.1094/Phyto-80-256 (1990).
Baker, C. A., Lecoq, H. & Purcifull, D. E. Serological and biological variability among papaya ringspot virus type-W isolates in Florida. Phytopathology 81, 722–728. https://doi.org/10.1094/Phyto-81-722 (1991).
Bateson, M. F., Henderson, J., Chaleeprom, W., Gibbs, A. J. & Dale, J. L. Papaya ringspot potyvirus: Isolate variability and the origin of PRSV type P (Australia). J. Gen. Virol. 75, 3547–3553. https://doi.org/10.1099/0022-1317-75-12-3547 (1994).
Premchand, U. et al. Comparative host range and molecular studies of papaya ringspot virus. BFAIJ 13, 370–373 (2021).
Yeh, S. D. & Gonsalves, D. Translation of Papaya ringspot virus RNA in vitro: Detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virology 143, 260–271. https://doi.org/10.1016/0042-6822(85)90306-3 (1985).
Yeh, S. D. et al. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73, 2531–2541. https://doi.org/10.1099/0022-1317-73-10-2531 (1992).
Premchand, U. et al. Identification of novel begomoviruses associated with leaf curl disease of Papaya (Carica papaya L.) in India. Agronomy 13, 3. https://doi.org/10.3390/agronomy13010003 (2023).
Chávez-Calvillo, G. et al. Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya L. is determined by their order of infection. Virology 489, 179–191. https://doi.org/10.1016/j.virol.2015.11.026 (2016).
Purcifull, D. E., Edwardson, J., Hiebert, E. & Gonsalves, D. Papaya ringspot virus. CMI/AAB. Description of Plant Viruses, No. 292, Wellesbourne, UK: Association of Applied Biologists, 209 (1984).
Kalleshwaraswamy, C. M. & Kumar, N. K. Transmission efficiency of papaya ringspot virus by three aphid species. Phytopathology 98, 541–546. https://doi.org/10.1094/PHYTO-98-5-0541 (2008).
Singh, V. & Singh, D. Studies on natural transmission of papaya ringspot virus disease in Eastern Uttar Pradesh. Ann. Plant. Prot. Sci. 18, 188–192 (2010).
Gadhave, K. R., Dutta, B., Coolong, T. & Srinivasan, R. A non-persistent aphid-transmitted Potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Sci. Rep. 9, 39256. https://doi.org/10.1038/s41598-019-39256-5 (2019).
Jain, R. K. et al. Variability in the coat protein gene of Papaya ringspot virus isolates from multiple locations in India. Arch. Virol. 149, 2435–2442. https://doi.org/10.1007/s00705-004-0392-x (2004).
Pushpa, R.N., Shantamma, P., Pappachan, A., Manjunath, B., Sumit, B., Kumar, S., Rangaswamy, K.T., Girish, T.R. & Nagaraju, N. Molecular characterization, epidemiology and management of the Papaya ringspot virus (PRSV) in papaya under southern Indian conditions. Int. J. Agric. Sci. 10, 5029–5038.
Pushpa, R. N., Nagaraju, N., Joshi, S. & Jagadish, K. S. Epidemiology of papaya ringspot virus-P (PRSVP) infecting Papaya (Carica papaya Linn.) and influence of weather parameters on population dynamics of predominant aphid species. J. Entomol. Zool. Stud. 7, 434–439 (2019).
Anu, O. P., Sheoran, M. S., Tonk, K. & Devi, K. Quantitative analysis of environmental influences on mustard aphid population dynamics using statistical modelling. Int. Res. J. Eng. Technol. 10, 555–562 (2023).
Azad, M. A. K., Amin, L. & Sidik, N. M. Gene technology for Papaya ringspot virus disease management. Sci. World J. 768038. https://doi.org/10.1155/2014/768038 (2014).
Hull, R. Plant Virology (Academic Press, 2013).
Premchand, U. et al. Management of papaya ringspot virus (PRSV) using insecticides and bio-rationals under field conditions. BFAIJ 13, 743–748 (2021).
Thiara, S. K., Cheema, S. S. & Kang, S. S. Effect of date of sowing and plant density on incidence of soybean yellow mosaic virus (SoYMV) in soybean. J. Res. 40, 207–215 (2003).
Clemente-Orta, G., Albajes, R. & Achon, M. A. Early planting, management of edges and non-crop habitats reduce potyvirus infection in maize. Agron. Sustain. Dev. 40, 21. https://doi.org/10.1007/s13593-020-00625-4 (2020).
Kone, N. et al. Influence of planting date on incidence and severity of viral disease on cucurbits under field condition. Ann. Agric. Sci. 62, 99–104. https://doi.org/10.1016/j.aoas.2017.05.005 (2017).
Broadbent, L., Heathcote, G., McDermott, N. & Taylor, C. The effect of date of planting and of harvesting potatoes on virus infection and on yield. Ann. Appl. Biol. 45, 603–622. https://doi.org/10.1111/j.1744-7348.1957.tb00407.x (1957).
MacKenzie, T. D., Fageria, M. S., Nie, X. & Singh, M. Effects of crop management practices on current-season spread of potato virus Y. Plant. Dis. 98, 213–222. https://doi.org/10.1094/PDIS-04-13-0403-RE (2014).
Abbas, G. et al. Effect of planting dates on agronomic crop production. In Agronomic Crops: Volume 1: Production Technologies 131–147 (2019). https://doi.org/10.1007/978-981-32-9151-5_8.
Mora-Aguilera, G., Téliz, D., Campbell, C. L. & Avila, C. Temporal and spatial development of Papaya ringspot in Veracruz, Mexico. J. Phytopathol. 136, 27–36. https://doi.org/10.1111/j.1439-0434.1992.tb01278.x (1992).
Mora-Aguilera, G., Nieto-Angel, D., Téliz, D. & Campbell, C. L. Development of a prediction model for Papaya ringspot in Veracruz, Mexico. Plant. Dis. 77, 1205–1211. https://doi.org/10.1094/PD-77-1205 (1993).
Sharma, S. K. et al. Integrated management of papaya ringspot virus. Acta Hortic. 851, 473–480. https://doi.org/10.17660/ActaHortic.2010.851.73 (2010).
Chandrashekar, K., Chavan, V. M., Sharma, S. K. & Bhosle, A. B. Management of PRSV-P in Papaya through time of planting and border cropping. Indian J. Hortic. 72, 423–425. https://doi.org/10.5958/0974-0112.2015.00083.3 (2015).
Thiribhuvanamala, G., Sridharan, S., Soorianathasundaram, K. & Reddy, M. K. Influence of weather factors on aphid population and the incidence of papaya ringspot virus disease. Pest Manag. Hortic. Ecosyst. 22, 91–93 (2016).
Onwughalu, J. T., Abo, M. E., Okoro, J. K., Onasanya, A. & Sere, Y. Rice yellow mottle virus infection and reproductive losses in rice (Oryza sativa Linn). Trends Appl. Sci. Res. 6, 182–189. https://doi.org/10.3923/tasr.2011.182.189 (2011).
De Breuil, S., Giolitti, F. J., Bejerman, N. & Lenardon, S. L. Effects of cucumber mosaic virus on the yield and yield components of peanut. J. Plant. Pathol. 669, 669–673 (2012).
Olobashola, N., Salaudeen, M. T. & Achikwu, M. Growth and yield responses of sweet pepper (Capsicum annuum L.) cultivars to infections with cucumber mosaic virus disease. NJAFE 13, 201–205 (2017).
Kumar, J. V. et al. Rapid real-time viral load estimation technique for Chilli leaf curl virus and its validation in different Chilli genotypes from Eastern Himalayan plains (2022). https://doi.org/10.21203/rs.3.rs-1906135/v1.
Elvira González, L., Peiró, R., Rubio, L. & Galipienso, L. Persistent Southern tomato virus (STV) interacts with cucumber mosaic and/or pepino mosaic virus in mixed-infections modifying plant symptoms, viral titer, and small RNA accumulation. Microorganisms 9, 689. https://doi.org/10.3390/microorganisms9040689 (2021).
Shirima, R. R. et al. Absolute quantification of cassava brown streak virus mRNA by real-time qPCR. J. Virol. Methods 245, 5–13. https://doi.org/10.1016/j.jviromet.2017.03.003 (2017).
Ranabhat, N. B., Bruce, M. A., Fellers, J. P. & Shoup Rupp, J. L. A reproducible methodology for absolute viral quantification and viability determination in mechanical inoculations of wheat streak mosaic virus. Trop. Plant. Pathol. 47, 553–561. https://doi.org/10.1007/s40858-022-00507-y (2022).
Rubio, L. et al. Detection and absolute quantitation of watermelon mosaic virus by real-time RT-PCR with a TaqMan probe. J. Virol. Methods. 300, 114416. https://doi.org/10.1016/j.jviromet.2021.114416 (2022).
Chai, A. et al. Rapid quantification of infectious cucumber green mottle mosaic virus in watermelon tissues by PMA coupled with RT-qPCR. Viruses 14, 2046. https://doi.org/10.3390/v14092046 (2022).
Anonymous. Package of Practice: Papaya. University of Horticultural Sciences, Bagalkot, India (2023), accessed on 10 May 2023; http://uhsbagalkot.edu.in/downloads/Horticulture_POP.pdf.
Shaner, G. & Finney, R. E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67, 1051–1056 (1977).
Zhaozhi, L. et al. Differences in the high-temperature tolerance of Aphis craccivora Koch (Hemiptera: Aphididae) on cotton and soybean: Implications for ecological niche switching among hosts. Appl. Entomol. Zool. 52, 9–18. https://doi.org/10.1007/s13355-016-0446-z (2017).
Dijkstra, J. & de Jager, C. P. Virus transmission by aphids. In Practical Plant Virology: Protocols and Exercises 148–158 (Springer, 1998). https://doi.org/10.1007/978-3-642-72030-7_28.
Sheoran, O. P., Tonk, D. S., Kaushik, L. S., Hasija, R. C. & Pannu, R. S. Statistical software package for agricultural research workers. Recent Advances in Information Theory, Statistics & Computer Applications by D.S. Hooda & R.C. Hasija, Department of Mathematics Statistics, CCS HAU, Hisar 8, 139–143 (1998).
Zhu, X. et al. Evaluation of new reference genes in Papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 7, e44405. https://doi.org/10.1371/journal.pone.0044405 (2012).
Wang, J. J. & Tsai, J. H. Effect of temperature on the biology of Aphis spiraecola patch (Homoptera: Aphididae). Ann. Entomol. Soc. Am. 93, 874–883. https://doi.org/10.1603/0013-8746(2000)093[0874:EOTOTB]2.0.CO;2 (2000).
Alyokhin, A., Drummond, F. A., Sewell, G. & Storch, R. H. Differential effects of weather and natural enemies on coexisting aphid populations. Environ. Entomol. 40, 570–580 (2011).
Sun, J., Tan, X., Li, Q., Francis, F. & Chen, J. Effects of different temperatures on the development and reproduction of Sitobion miscanthi from six different regions in China. Front. Ecol. Evol. 10, 794495 (2022).
Brabec, M., Honěk, A., Pekár, S. & Martinková, Z. Population dynamics of aphids on cereals: Digging in the time-series data to reveal population regulation caused by temperature. PLoS ONE 9, e106228 (2014).
Chavan, V. M., Tomar, S. P. S. & Dhale, M. G. Management of Papaya ringspot virus (PRSV-P) of Papaya under Pune conditions. Acta Hortic. 851, 447–452. https://doi.org/10.17660/ActaHortic.2008.851.63 (2008).
Rashmi, P., Mayank, R., Kuldeep, S. & Deepti, C. Studies on population dynamics of Myzus persicae on potato crop with special reference to its relation with various weather parameters. Veg. Sci. 34, 167–169 (2007).
Sarvendra, S., Akhilesh, K. & Awasthi, B. K. Study of sucking and leaf-feeding insects in relation to weather parameters on the Brinjal crops. Veg. Sci. 32, 210–212 (2005).
Lazarowitz, S. G. Geminiviruses: Genome structure and gene function. CRC Crit. Rev. Plant. Sci. 11, 327–349. https://doi.org/10.1080/07352689209382350 (1992).
Timmermans, M. C., Das, O. P. & Messing, J. Geminiviruses and their uses as extrachromosomal replicons. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 45, 79–112. https://doi.org/10.1146/annurev.pp.45.060194.000455 (1994).
Brown, C. R., Corsini, D., Pavek, J. & Thomas, P. E. Heritability of field resistance to potato leafroll virus in cultivated potato. Plant Breed. 116, 585–588. https://doi.org/10.1111/j.1439-0523.1997.tb02194.x (1997).
Gan, S. Mitotic and postmitotic senescence in plants. Sci. Aging Knowl. Environ. 38, re7. https://doi.org/10.1126/sageke.2003.38.re7 (2003).
Ndunguru, J. & Rajabu, A. C. Effect of Okra mosaic virus disease on the above-ground morphological yield components of Okra in Tanzania. Sci. Hortic. 99, 225–235. https://doi.org/10.1016/S0304-4238(03)00108-0 (2004).
Zhu, S. et al. The rice Dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice Dwarf symptoms. Plant. Physiol. 139, 1935–1945. https://doi.org/10.1104/pp.105.072306 (2005).
Espinoza, C., Medina, C., Somerville, S. & Arce-Johnson, P. Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J. Exp. Bot. 58, 3197–3212. https://doi.org/10.1093/jxb/erm165 (2007).
Benjamins, R. & Scheres, B. Auxin: The looping star in plant development. Annu. Rev. Plant. Biol. 59, 443–465. https://doi.org/10.1146/annurev.arplant.58.032806.103805 (2008).
Jin, L. et al. Rice Dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog. 12, e1005847. https://doi.org/10.1371/journal.ppat.1005847 (2016).
Sheikh, M. A., Safiuddin, Khan, Z. & Mahmood, I. Effect of bhendi yellow vein mosaic virus on yield components of Okra plants. J. Plant. Pathol. 95, 391–393 (2013).
Li, W., Han, Y., Tao, F. & Chong, K. Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J. Plant Physiol. 168, 1837–1843. https://doi.org/10.1016/j.jplph.2011.05.020 (2011).
Shalit-Kaneh, A. et al. The flowering hormone florigen accelerates secondary cell wall biogenesis to harmonize vascular maturation with reproductive development. Proc. Natl. Acad. Sci. USA 116, 16127–16136. https://doi.org/10.1073/pnas.1906405116 (2019).
Prakash, J., Singh, K., Goswami, A. K. & Singh, A. K. Comparison of plant growth, yield, fruit quality, and biotic stress incidence in Papaya Var. Pusa Nanha under polyhouse and open field conditions. Indian J. Hortic. 72, 183–186. https://doi.org/10.5958/0974-0112.2015.00036.5 (2015).
Huseynova, I. M. et al. Virus-induced changes in photosynthetic parameters and peroxidase isoenzyme contents in tomato (Solanum lycopersicum L.) plants. Photosynthetica 56, 841–850. https://doi.org/10.1007/s11099-017-0737-9 (2018).
Lal, M. K. et al. Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum tuberosum L.) tubers. Food Chem. 359, 129939. https://doi.org/10.1016/j.foodchem.2021.129939 (2021).
Broadbent, D. E. Listening to one of two synchronous messages. J. Exp. Psychol. 44, 51–55. https://doi.org/10.1037/h0056491 (1952).
Cadman, C. H. & Chambers, J. Factors affecting the spread of aphid-borne viruses in potato in Eastern Scotland: III. Effects of planting date, rouging and age of crop on the spread of potato leaf roll and Y viruses. Ann. Appl. Biol. 48, 729–738. https://doi.org/10.1111/j.1744-7348.1960.tb03572.x (1960).
Mangrauthia, S. K., Singh, P. & Praveen, S. Genomics of helper component proteinase reveals effective strategy for papaya ringspot virus resistance. Mol. Biotechnol. 44, 22–29. https://doi.org/10.1007/s12033-009-9205-5 (2010).
Sahana, N. et al. Inhibition of the host proteasome facilitates Papaya ringspot virus accumulation and proteasomal catalytic activity is modulated by viral factor HcPro. PLoS ONE 7, e52546. https://doi.org/10.1371/journal.pone.0052546 (2012).
Vargas-Mejía, P., Vega-Arreguín, J., Chávez-Calvillo, G., Ibarra-Laclette, E. & Silva-Rosales, L. Differential accumulation of innate and adaptive immune response derived transcripts during antagonism between papaya ringspot virus and Papaya mosaic virus. Viruses 12, 230. https://doi.org/10.3390/v12020230 (2020).
Hong, J. S. & Ju, H. J. The plant cellular systems for plant virus movement. Plant Pathol. J. 33, 213–228. https://doi.org/10.5423/PPJ.RW.09.2016.0198 (2017).
Tran, P. T., Zhang, C. F. & Citovsky, V. Rapid generation of inoculum of a plant RNA virus using overlap PCR. Virology 553, 46–50. https://doi.org/10.1016/j.virol.2020.11.001 (2021).
Develey-Riviere, M. P. & Galiana, E. Resistance to pathogens and host developmental stage: A multifaceted relationship within the plant Kingdom. New. Phytol. 175, 405–416. https://doi.org/10.1111/j.1469-8137.2007.02130.x (2007).
Hu, L. & Yang, L. Time to fight: Molecular mechanisms of age-related resistance. Phytopathology 109, 1500–1508. https://doi.org/10.1094/PHYTO-11-18-0443-RVW (2019).
Chikh-Ali, M., Tran, L. T., Price, W. J. & Karasev, A. V. Effects of the age-related resistance to potato virus Y in potato on the systemic spread of the virus, incidence of the potato tuber necrotic ringspot disease, tuber yield, and translocation rates into progeny tubers. Plant Dis. 104, 269–275. https://doi.org/10.1094/PDIS-06-19-1201-RE (2020).
Wang, X., Rong, W., Liu, Y., Wang, X. & Zhang, Z. Investigation of the mechanism of adult-stage resistance to barley yellow dwarf virus associated with a wheat Thinopyrum intermedium translocation. Crop J. 6, 394–405. https://doi.org/10.1016/j.cj.2018.02.002 (2018).
Leisner, S. M., Turgeon, R. & Howell, S. H. Long distance movement of cauliflower mosaic virus in infected turnip plants. Mol. Plant. Microbe Interact. 5, 41–47. https://doi.org/10.1094/MPMI-5-041 (1992).
Zhu, Y. J., Lim, S. T., Schenck, S., Arcinas, A. & Komor, E. RT-PCR and quantitative real-time RT-PCR detection of sugarcane yellow leaf virus (SCYLV) in symptomatic and asymptomatic plants of Hawaiian sugarcane cultivars and the correlation of SCYLV titre to yield. Eur. J. Plant. Pathol. 127, 263–273. https://doi.org/10.1007/s10658-010-9591-3 (2010).
Agrios, G. N., Walker, M. E. & Ferro, D. N. Effect of cucumber mosaic virus inoculation at successive weekly intervals on growth and yield of pepper (Capsicum annuum) plants. Plant. Dis. 69, 52–55. https://doi.org/10.1094/PD-69-52 (1985).
Levy, D. & Lapidot, M. Effect of plant age at inoculation on expression of genetic resistance to tomato yellow leaf curl virus. Arch. Virol. 153, 171–179. https://doi.org/10.1007/s00705-007-1086-y (2008).